Distributed Backstepping Control of Multiple Thrust-Propelled Vehicles on Balanced Graph

Dongjun Lee ∗

∗ Department of Mechanical, Aerospace & Biomedical Engineering, Univ. of Tennessee, Knoxville, TN 37996 USA. Email: djlee@utk.edu

Abstract: We propose novel distributed exponentially-converging control frameworks for flocking and centroid trajectory tracking of multiple thrust-propelled vehicles (TPVs), which consist of the under-actuated translation dynamics on E(3) with one-dimensional thrust-force input and the fully-actuated attitude kinematics on SO(3) with angular-rates inputs; and evolves on a strongly-connected, yet, balanced information graph G. To address the issue of under-actuation, we utilize the backstepping technique; and, to decentralize the backstepping control over the balanced graph, we extend/generalize the (passive) decomposition of [15].

Keywords: thrust-propelled vehicles, passive decomposition, backstepping, flocking, tracking, balanced graph

As pointed out in [2], many autonomous robotic vehicles share the following properties: 1) they are 6-degree-of-freedom (DOF) dynamic systems evolving on SE(3) = E(3) × SO(3); 2) their attitude motion on SO(3) is fully-actuated; and 3) their translation motion on E(3) is under-actuated with only one-DOF actuation (i.e. thrust), whose direction is fixed w.r.t. the body-frame, thus, coupled with the vehicle’s attitude motion in SO(3). Some examples include quadrotor-type unmanned aerial vehicles (UAVs) [5, 10, 4], autonomous underwater or surface-water vehicles [6, 7] and wheeled mobile robots (WMRs) [12, 13]. Following [10], we call such systems thrust-propelled vehicles (TPVs). See Fig. 1 for an example of such TPVs.

In this paper, we propose a novel distributed backstepping control framework for multiple TPVs, with the topology of communication (or sensing) among them being constrained to be a (time-invariant) balanced graph G (i.e. in-degree = out-degree), which is more general than an undirected graph. Similar to [10], we particularly consider the TPVs, which consist of the translational dynamics on E(3) propelled by a one-DOF body-fixed thrust-force, and the attitude kinematics on SO(3) with the angular-rates as the control inputs. We consider these “mixed” TPVs, since: 1) such (desired) angular-rates can also be achieved for the TPVs with the angular-torque inputs, since their attitude dynamics in SO(3) is fully-actuated with some exponentially-converging angular-rate tracking controls likely attainable [23]; and 2) some commercially available TPVs only accept thrust-force and angular-rates, not angular-torques (e.g., Asctec Hummingbird®).

We then propose a (Cartesian) flocking control law for multiple of such (heterogeneous/nonlinear) TPVs on a balanced graph. The key challenge to achieve this is that the TPVs are under-actuated (i.e., translation dynamics on E(3)) with one-DOF thrust control), preventing us from directly utilizing many consensus or flocking results derived for (simple) agents with full-actuation (e.g., [24, 15, 25, 11]). To address this issue of under-actuation, we first extend/generalize the (passive) decomposition of [15, Lee and Li] to explicitly incorporate the graph topology into it, with which we can not only analyze the TPVs’ flocking dynamics (similar to [15]) and design the backstepping law [22] for all the TPVs together; but also can show that this (combined) backstepping law is indeed decentralizable among the TPVs while respecting the topology of G. We also show that: 1) under a similar condition as that in [15, (20), Th.1], the TPVs exponentially converge to the desired formation shape and the common constant flocking velocity; yet, 2) unlike [15], their centroid velocity is not invariant, which deviates from its initial value by a certain (exponentially-decaying) integrand term dependent on the initial condition.

Augmenting this distributed flocking control law for each TPV with a certain trajectory tracking action (scaled by its mass), we also achieve exponentially-converging backstepping centroid trajectory tracking control for the multiple TPVs, which is still distributed (i.e. respects the topology of balanced G), although it requires the (common) centroid’s desired trajectory be available to all the TPVs. A particularly interesting aspect of this distributed

1 That is, all the TPVs converge to a certain desired formation shape, while their velocities reach a common constant value [24].
backstepping centroid trajectory tracking control is that
the augmented centroid tracking action does not at all
perturb the original flocking control’s attempt to achieve
the desired formation shape (i.e. formation-centroid decou-
ppling); it rather further enforces (or improves the robust-
ness of) this formation control’s exponential convergence.

There are many results available for controlling a
single TPV on SE(3) [19, 2, 5, 10]. Yet, there are very rare
results for controlling multiple of TPVs, particularly when
the communication/sensing topology among them is not
complete and directed. An exception for this is [1], which,
however, utilizes absolute damping (in contrast to relative
damping), more suitable for (strict) stabilization and not
so for the (marginally-stable) flocking problem of this
paper. The results of [1] are also limited to an undirected
graph, and their stability conditions are more complicated
and conservative than ours (e.g., TPVs’ acceleration ≤
g for all the three E(3) directions, making aggressive
ascending or swaying impossible).

On the other hand, there are numerous results for multia-
genent consensus or flocking control on a
directed/balanced
graph, yet, most of them are for simple agents on vector
spaces (e.g. first/second-order point mass) and/or with
full-actuation [16, 24, 15, 11, 21]. Some recent results,
perhaps most related to our paper, are [18, 17], where
some backstepping control laws are designed for the similar
problem considered in this paper. Yet, due to their vector-
space embedding, the results of [18, 17] are not directly
applicable to the TPVs, whose configuration manifold is
SE(3), not identifiable by such a vector space.

To our knowledge, our flocking and centroid trajectory
tracking results in this paper are the very first results on the
distributed control of multiple under-actuated TPVs in
SE(3) on a balanced graph.

The rest of the paper is organized as follows. We pro-
vide some preliminary materials in Sec. 1. Distributed
backstepping flocking control for multiple under-actuated
TPVs on a balanced graph is presented in Sec. 2, and dis-
tributed backstepping centroid trajectory tracking control
in Sec. 3. Concluding remarks and comments on future
research are given in Sec. 4.

1. PRELIMINARY

Let us consider a team of N “mixed” thrust-propelled vehi-
cles (TPVs), each with the following translation dynamics
in E(3) and the attitude kinematics in SO(3) [10] for the
i-th agent,

\[
\begin{align*}
\dot{x}_i &= -\lambda_i R_i e_3 + m_i g e_3 + \delta_i \\
\dot{R}_i &= R_i S(w_i)
\end{align*}
\]

(1) (2)

where \(m_i > 0 \) is the mass, \(x_i \in \mathbb{R}^3 \) is the Cartesian
position w.r.t. the inertial frame with \(e_3 \) representing
the down-direction and \(e_1, e_2 \) being the other two canonical
directions (respecting the right-hand rule), \(\lambda_i \in \mathbb{R} \)
the thrust along the body frame, \(R_i \in SO(3) \) describes
the rotation of the body frame w.r.t. the inertial frame,
\(w_i \in \mathbb{R}^3 \) is the body frame’s angular rate relative to
the inertial frame represented in the body frame, \(g \)
is the gravitational constant, \(\delta_i \) is the disturbance (e.g.
aero-dynamics effect [8]), and \(S(*) : \mathbb{R}^3 \rightarrow so(3) \) is
the skew-symmetric operator defined s.t. for \(a, b \in \mathbb{R}^3 \),
\[
S(a) b = a \times b.
\]

8873
here. To address this challenge, in this paper, we will utilize the backstepping control [22], which is also implementable over a (given) balanced graph G.

2. DISTRIBUTED BACKSTEPPING FLOCKING CONTROL OF MULTIPLE TPVs

Let us first start with the distributed flocking control problem. For this, following [15], we design the desired control \(\nu_i \) for the \(i \)-th TPV (1) s.t.

\[
\lambda_i R_i e_3 = b \sum_{j \in N_i} w_{ij} e_{ij} + k \sum_{j \in N_i} w_{ij} e_{ij} + m_i g_{e_3} + \nu_{ei} \quad (4)
\]

where \(b, k > 0 \) are the gain coefficients, \(w_{ij} > 0 \) is the weight for the edge \((\nu_i, \nu_j) \in \mathcal{E}, e_{ij} := x_i - x_j, N_i \) is the set of neighbors of the \(i \)-th TPV, and \(\nu_{ei} \) is the control-generation error, which can be measured by using \(\lambda_i R_i e_3 \) and \(\nu_i \), both known.

With this \(\nu_i \) and \(\eta_i \), we can then write the \(i \)-th TPV’s closed-loop dynamics as

\[
m_i \dot{x}_i + b \sum_{j \in N_i} w_{ij} e_{ij} + k \sum_{j \in N_i} w_{ij} e_{ij} = -\nu_{ei}
\]

and, stacking them up, we can write the closed-loop dynamics of the N TPVs in the “product” form:

\[
\dot{M} \dot{x} + b L \dot{x} + k L x = -\nu \quad (5)
\]

where \(M := M \otimes I_3 \in \mathbb{R}^{3N \times 3N} \) with \(M := \text{diag}[m_1, m_2, \ldots, m_N] \in \mathbb{R}^{N \times N} \otimes I_3 \) and \(I_3 \) are the Kronecker product [3] and the 3 \(\times \) 3 identity matrix; \(L := L \otimes I_3 \in \mathbb{R}^{3N \times 3N} \) with \(L \in \mathbb{R}^{3 \times 3} \) being the graph Laplacian of \(G \); \(x := [x_1; x_2; \ldots; x_N] \in \mathbb{R}^{3N} \), and \(\nu := [\nu_1; \nu_2; \ldots; \nu_N] \in \mathbb{R}^{3N} \).

Since \(G \) is balanced, yet, not necessarily undirected, \(L \) and \(L \) are in general not symmetric.

To decompose the product dynamics (5) into that of the centroid and that of the formation shape among the N TPVs, we first extend/generalize the passive decomposition of [15] using the results of [Lee and Li, 13] s.t.:

\[
z := Sx, \quad \eta := S^{-T} \nu \quad (6)
\]

with \(z := [z_1; z_2; \ldots; z_N] \), \(\eta := [\eta_1; \eta_2; \ldots; \eta_N] \), and

\[
S := \left[I_N^T M / m_L \right] \otimes I_3, \quad S^{-1} = \left[I_N \Delta_\perp \right] \otimes I_3 \quad (7)
\]

where 1) \(\Omega_\perp \in \mathbb{R}^{(N-1) \times N} \) is defined s.t. \(z_c = (\Omega_\perp \otimes I_3)x \in \mathbb{R}^{3(N-1)} \) can specify the formation shape among the N TPVs (i.e. \(z_c \to 0 \) implies \(x_i - x_j \to 0 \)), while also satisfying \(\Omega_\perp 1_N = 0 \) and having full row rank (i.e. \(N-1 \)); 2) with \(m_L := \sum_{i=1}^{N} m_i \) and \(I_N^T M / m_L = [m_1, m_2, \ldots, m_N] / m_L \), \(z_1 = \sum_{i=1}^{N} (m_i / m_L) x_i \in \mathbb{R}^3 \) (i.e. centroid position); 3) \(\Delta_\perp \in \mathbb{R}^{3 \times (N-1)} \) is given by [Lee and Li, 13]

\[
\Delta_\perp = M^{-1} \Omega_\perp \left(\Omega_\perp M^{-1} \Omega_\perp^T \right)^{-1} \quad (8)
\]

and: 4) \(\eta_0 = (I_N^T \otimes I_3) \nu = \sum_{i=1}^{N} \nu_{ei} \in \mathbb{R}^3 \), with \(\eta_0 \) and \(\eta_\perp \) representing the portion of \(\nu_0 \) perturbing the \(z_1 \) and \(z_\perp \) dynamics, respectively.

Here, in fact, \(\Delta_\perp \) identifies the space orthogonal to \(1_N \) w.r.t. the metric \(M \), as can be seen by \(I_N^T \Delta_\perp M \Delta_\perp = 0 \) (from \(\Omega_\perp 1_N = 0 \)) - see [Lee and Li, 13]. We can also show that, with \(\Omega_\perp \) as defined above, \(S \) is always full-rank (thus, invertible), since \(I_N^T M / m_L \) cannot be spanned by the rows of \(\Omega_\perp \). This is because, if so, there should exist a non-zero \(y \in \mathbb{R}^N \) s.t.

\[
y^T \Omega_\perp = I_L^T M / m_L
\]

which, yet, is impossible, since, post-multiplying it by \(1_N \), we have

\[
0 = y^T \Omega_\perp 1_N = I_N^T M / m_L = 1.
\]

We can also directly check \(S^{-1} = I_{3N} \) for (7) using properties of Kronecker product (e.g., \((A \otimes B)(C \otimes D) = (AC) \otimes (BD) \) for compatible \(A, B, C, D \) [3]).

The matrix \(\Omega_\perp \), as specified above, can be chosen s.t., for instance,

\[
\Omega_\perp := \left[\begin{array}{ccccc} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & \cdots & -1 \end{array} \right]
\]

similar to [15] (or any equivalent class of such [14]). If the graph \(G \) is balanced and strongly-connected, we can also choose

\[
\Omega_\perp := [L_1 I_2] \quad (9)
\]

with \(L_1 \in \mathbb{R}^{(N-1) \times (N-1)} \), \(l_2 \in \mathbb{R}^{N-1} \) are the partitions of the Laplacian \(L \) s.t.

\[
L := [L_1 I_2] \left[\begin{array}{c} l_1 \\ l_2 \end{array} \right], \quad \left[\begin{array}{c} I_{N-1} 0_N \end{array} \right] \left[\begin{array}{c} I_1 \\ l_1 \end{array} \right] = [L_1 I_2] \left[\begin{array}{c} l_1 \\ l_2 \end{array} \right] \quad (10)
\]

where \(S^{-T} MS^{-1} := \left[\begin{array}{cc} m_L \otimes I_3 & 0 \\ 0 & M \end{array} \right] \)

with \(M := \Delta_\perp^T \Delta_\perp \otimes I_3 \in \mathbb{R}^{3(N-1) \times 3(N-1)} \) and \(I_N^T \Delta_\perp M \Delta_\perp = 0 \) (from \(\Omega_\perp 1_N = 0 \)); and

\[
S^{-T} LS^{-1} = \left[\begin{array}{cc} 0 & \Omega_\perp^T \Delta_\perp \Delta_\perp \\ I_{N-1} \Delta_\perp \Delta_\perp \end{array} \right] \otimes I_3 =: \text{diag}[0_3, L] \quad (11)
\]

with \(L := \Delta_\perp^T \Delta_\perp \otimes I_3 \in \mathbb{R}^{3(N-1) \times 3(N-1)} \) and \(I_N^T \Delta_\perp = 0 \) (from \(G \) being balanced).

Here, using a similar argument as in [15, Th.1], we can show that, if \(G \) is strongly-connected and balanced, \(L_{sym} := (L + L^T) / 2 > 0 \) (i.e. positive-definite). This is because, from (11), we have

\[
S^{-T} L_{sym} S^{-1} = \text{diag}[0_3, L_{sym}]
\]

where \(L_{sym} := (L + L^T) / 2 \), \(L_{sym} \otimes I_3 \), with \(L_{sym} := (L + L^T) / 2 \) being a Laplacian (of the strongly-connected mirror graph of \(G \)), which possesses a simple zero eigenvalue with all the other \(N - 1 \) eigenvalues strictly-positive [20]; while the congruence transform in the left side preserves the signs of the eigenvalues. Therefore, all the eigenvalues of \(L_{sym} \) are strictly-positive, implying \(L_{sym} > 0 \).
Then, for the z_e-dynamics (10), we can show that
\[
\frac{dV_1}{dt} = -\left(\frac{\dot{z}_e}{z_e}\right)^T \left[b L_{\text{sym}} - \epsilon M \frac{k - \epsilon b L_{\text{skew}}}{2} \right] \left(\frac{\dot{z}_e}{z_e}\right) - (\dot{z}_e + \epsilon z_e)^T \eta_e
\]
\[= Q
\]
where
\[V_1 := \frac{1}{2} \left(\frac{\dot{z}_e}{z_e}\right)^T \left[M / \epsilon M (k + \epsilon b L_{\text{sym}}) \right] \left(\frac{\dot{z}_e}{z_e}\right)\]
\[\frac{dV_2}{dt} = -\left(\frac{\dot{z}_e}{z_e}\right)^T Q\left(\frac{\dot{z}_e}{z_e}\right) - \frac{1}{2} \eta_e^T (\dot{z}_e + \epsilon z_e) + \frac{1}{2} \eta_e^T \Gamma_1^{-1} \eta_e + \frac{1}{2} \eta_e^T \Gamma_1^{-1} \eta_e
\]
which suggests the following target update law for η_e:
\[\dot{\eta}_e = \Gamma (\dot{z}_e + \epsilon z_e) - \alpha \eta_e\]
where $\alpha > 0$. With this (15), we can then show that
\[
\frac{dV_2}{dt} = -\left(\frac{\dot{z}_e}{z_e}\right)^T Q\left(\frac{\dot{z}_e}{z_e}\right) - \frac{1}{2} \eta_e^T (I - \Gamma_1^{-1} \Gamma) (\dot{z}_e + \epsilon z_e)
\]
\[= -\gamma Q\eta_e
\]
where $\gamma := \|z_e; \dot{z}_e; \eta_e\|$ and
\[Q_e := \begin{bmatrix}
\frac{b L_{\text{sym}} - \epsilon M}{2} & k - \epsilon b L_{\text{skew}} & \frac{-k - \epsilon b L_{\text{skew}}}{2} \\
\frac{k - \epsilon b L_{\text{skew}}}{2} & \epsilon k L_{\text{sym}} & I - \gamma^{-1} \Gamma^{-1}
\end{bmatrix}
\]
Then, given Γ, this Q_e will be positive-definite, if
\[b L_{\text{sym}} - \epsilon M > 0, \quad \epsilon = k/b
\]
and
\[b \cdot \alpha \cdot \gamma_{\text{sym}}^{-1} = \frac{I - \gamma^{-1} \Gamma^{-1}}{4} \left[(L_{\text{sym}} - k / b M)^{-1} + L^{-1} \right] \frac{I - \gamma^{-1} \Gamma^{-1}}{4}
\]
(18)

Then, the key question is whether we can implement the target update law (15) in a distributed manner as specified by the (balanced and strongly-connected) communication/sensing graph G with a uniformly-bounded Γ. For this, we consider the following distributed backstepping update law for ν_e:
\[\dot{\nu}_e = \gamma \sum_{i \in N_i} w_{ij} (\dot{e}_{ij} + \epsilon e_{ij}) - \alpha \nu_e
\]
with $\gamma > 0$ or, equivalently,
\[\dot{\nu}_e = \gamma L (\dot{x} + \epsilon x) - \alpha \nu_e
\]
which is distributed on the graph G, as manifested by the graph Laplacian L therein. It is yet not still clear if this distributed update law (20) can produce the target update law (15) or not.

For this, recall that
\[\dot{\eta}_e = (\Delta \otimes I_3)^T \nu_e = \gamma (\Delta \otimes I_3)^T L (\dot{x} + \epsilon x) - \alpha \eta_e
\]
which will match the target update law (15), if
\[
\Gamma (\dot{z}_e + \epsilon z_e) = \gamma (\Delta \otimes I_3)^T L (\dot{x} + \epsilon x)
\]
(19)

and where we use the fact that $\dot{x} = (1_N \otimes I_3) z_1 + (\Delta \otimes I_3) \dot{z}_e$ from (6). We can then transform the distributed update law (20) into $\dot{\eta}_e$ s.t.
\[\dot{\eta}_e = (\Delta \otimes I_3)^T \nu_e
\]
(21)

which is uniformly bounded for a given $\gamma > 0$. Moreover, if the graph G is balanced and strongly-connected, following (11): 1) Γ is invertible, since so is L; and 2) $\Gamma_1^{-1} > 0$, since we have, for any $y \in \mathbb{R}^{3(N-1) \times 3(N-1)}$,
\[2 y^T \Gamma_1^{-1} y = y^T (I - \Gamma_1^{-1} \Gamma) y = y^T (\Gamma - \Gamma) \Gamma y > 0 \]
with equality hold only with $y = 0$, since $\Gamma_1 = \gamma L_{\text{sym}} > 0$. This Γ is used only for analysis, thus, not needed to be computed for our control implementation.

One last thing that remains to show is the stability of the z_1-dynamics (9). For this, from (6) that $\eta_1 = (1_N \otimes I_3)^T \nu_e$. With the distributed update (20), we then have
\[\dot{\eta}_1 = (1_N \otimes I_3)^T \dot{\eta}_e = (1_N \otimes I_3)^T L (\dot{x} + \epsilon x) - \alpha \eta_1 = -\alpha \eta_1
\]
since (1_N \otimes I_3)^T L = (1_N \otimes I_3)^T L \otimes I_3 = 1_N \otimes I_3 \otimes I_3 = 0$ from G being balanced. This implies that η_1 in (9) is by itself exponentially decaying; and the z_1-dynamics is stable with bounded \dot{z}_1 and \dot{z}_1, although z_1 is in general unbounded. Integrating (9) with $\eta_1(t) = \eta_1(0) e^{-\alpha t}$, we can also compute the (constant) terminal centroid velocity s.t.
\[\dot{z}_1(t) = \frac{\eta_1(0)}{\alpha m_L} \left[e^{-\alpha t} - 1 \right] \rightarrow \dot{z}_1(0) + \frac{\eta_1(0)}{\alpha m_L}
\]
which shows that: 1) if $\eta_1(0) = 0$, $\dot{z}_1(t) = \dot{z}_1(0)$ (i.e. invariant centroid velocity); and 2) the larger m_L and α are, the closer $\dot{z}_1(t)$ is to $\dot{z}_1(0)$ (i.e. almost invariant \dot{z}_1). Note here that, due to the under-actuation of TPVs (i.e. $\eta_1(0) \neq 0$), in contrast to [15], \dot{z}_1 is in general not invariant even with G being balanced. Also, note that, with $\dot{z}_1 \rightarrow 0$ (i.e. $\dot{z}_1 - \dot{z}_1 \rightarrow 0$), we have $\dot{z}_1 = \sum_{i=1}^{N} (m_i / m_L) \dot{x}_i \rightarrow \dot{x}_i$. This means (22) also specifies the (common) constant terminal flocking velocity for each TPV s.t., $\dot{x}_i \rightarrow \sum_{j=1}^{N} (m_j / m_L) \dot{x}_j(0) + \eta_1(0) / (\alpha m_L)$.
The distributed backstepping flocking control, designed above, then needs to be decoded for the (real) control variables λ, w_i of each TPV. For this, using (19) with $\nu_{ei} = \lambda R_i R_i - \nu_i$ from (4) and $\bar{v}_i = (\lambda R_i S(w_i))R_i + \lambda R_i S(w_i) e_i$, (using (2)), we can obtain

$$[(\lambda_i + \alpha \lambda_i) R_i + \lambda R_i S(w_i)] e_i = \bar{v}_i + \alpha \nu_i + \gamma \sum_{j \in N_i} w_{i,j} (e_{i,j} + \epsilon e_{i,j}) =: \bar{v}_i$$

from which we can extract the control law for each TPV:

$$\lambda_i w_{i}^2 - \lambda_i w_i^1 \lambda_i + \alpha \lambda_i = R_i \bar{v}_i$$

with $w_i = [w_i^1, w_i^2, w_i^3]$. To compute ν_i in \bar{v}_i, we may also use

$$\nu_i = -b \sum_{j \in N_i} w_{ij} \left(\frac{\lambda_{i,j}}{m_i} R_i - \frac{\lambda_i}{m_i} R_j \right) e_3 + k \sum_{j \in N_i} w_{ij} \dot{e}_{ij}$$

to avoid the usage of (usually inaccessible) \dot{x}_i, which can be obtained by differentiating v_i in (4) with (1).

Notice that the control law (23) is indeed distributed, since ν_i can be computed only by using the information from the neighboring TPVs in N_i. The conditions (17)-(18) for the control gains b, k, ϵ, α can also always be achieved by choosing b, k large enough. These conditions (17)-(18) can be further relaxed, when the graph G is undirected, since, in this case, L and $\Gamma = \gamma L$ become both symmetric, thus, all the off block-diagonal terms in (16) vanish, and, consequently, 1) instead of the second item of the condition (17), we can choose any $\epsilon > 0$ s.t. $b L - \epsilon M > 0$; and 2) the condition (18) becomes unnecessary with any $\alpha > 0$ usable. Note that we also have $\nu_{ei} \to 0$ exponentially, since $\eta_i \to 0$ (with $P, Q_e > 0$ for (16)) and $\eta_i \to 0$ (see the equation before (22)), both exponentially. Since the z_1 and z_2 dynamics are both exponentially-converging, we may also obtain some robustness measures (e.g. ultimate boundedness) against bounded disturbances δ_i and/or uncertain m_i (for computing the above ν_i). We now summarize our results in the following Th. 1.

Theorem 1. Consider the N TPVs (1)-(2) on a balanced and strongly-connected graph G under the distributed backstepping flocking control (23), with its gains b, k, ϵ, α chosen according to (17)-(18) (or only the first item of (17) with any $\epsilon > 0$ and $\alpha > 0$, when G is undirected). Then, the flocking is achieved with:

1. $||\dot{x}_i - \dot{x}_j|| \to 0$ and $||x_i - x_j|| \to 0$ exponentially;
2. $\dot{x}_i \to \sum_{k=1}^{N_i} m_{i,k} \dot{x}_k(0) + \frac{m_{0}}{m_i}$ exponentially;
3. $\nu_{ei} \to 0$ exponentially; and
4. $\dot{z}_1(t) = \dot{z}_1(0) + \frac{m_{0}}{m_i} [1 - e^{-\alpha t}], \forall i, j = 1, 2, \ldots, N$.

3. DISTRIBUTED FLOCKING AND TWO-DIMENSIONAL TRACING OF MULTIPLE TPVS

Now, suppose that we not only want to achieve the desired formation shape among the N TPVs, but also to control their centroid position z_1 to follow a certain desired trajectory $z_1^d(t)$ in \mathbb{R}^3 in a distributed way as specified by the communication/sensing graph G. For this, we modify the flocking control law (4) s.t.

$$\lambda_i R_i e_3 = \nu_i + m_i \lambda_b (\dot{x}_i - \dot{z}_1^d) + \lambda_k (z_i - z_1^d) - \dot{z}_1^d + \nu_{ei}$$

where $\lambda_b, \lambda_k > 0$ are the control gains, $\nu_i \in \mathbb{R}^3$ is defined in (4), $\nu_{ei} \in \mathbb{R}^3$ is the newly added control to achieve the centroid trajectory tracking, and $\nu_{ei} \in \mathbb{R}^3$ is again the control-generation error. Here, we also assume that $z_1^d(t), \dot{z}_1^d(t), \ddot{z}_1^d(t)$ are available for all the TPVs, although inter-TPV communication/sensing is constrained by the balanced and strongly-connected graph G.

Given that the control ν_{ei} in (24) is seemingly designed with no explicit consideration on how this ν_{ei} will affect the z_i-dynamics through the balanced graph G, a rather surprising fact here is that this control ν_{ei} does not at all perturb the convergence of $z_i \to 0$; it rather “helps” the exponential convergence of $z_i \to 0$ (i.e., improves its robustness by relaxing the conditions (17)-(18)).

To show this, similar to Sec. 2, stacking up the individual TPV dynamics, we first obtain the product dynamics of the N TPVs s.t.

$$M \dddot{x} + bL \dddot{x} + kLx + \nu_L = -\nu_e$$

where $\nu_L = [\nu_{L,1}; \nu_{L,2}; \cdots; \nu_{L,N}] \in \mathbb{R}^{3N}$. Then, applying the passive decomposition (6) and some properties of its associated matrices, we can decompose and rewrite this product dynamics into

$$m_{LL} (z_1 - \dot{z}_1^d) + \lambda_b (z_1 - \dot{z}_1^d) + \lambda_k (z_1 - \dot{z}_1^d) = -\eta_1$$

$$M \ddot{z} + (bL + \lambda A) \dot{z} + (kL + \lambda A) z = -\eta_e$$

where $A := (\Omega L - \lambda_0^2 \Omega e^T) \otimes I_N > 0$. Detailed derivation of (25)-(26) is omitted here due to the page limitation and will be reported in a future publication.

This then clearly shows that: 1) if $\eta_1 \to 0$, we will have the centroid trajectory tracking ($\dot{z}_1 - \dot{z}_1^d, z_1 - z_1^d \to 0$ with any $\alpha, \lambda_b > 0$; and 2) the centroid tracking control ν_{ei} in (24) indeed favorably helps the exponential convergence of $z_i \to 0$ with $A \succ 0$. From A being symmetric, we can also obtain the same relation (12) for (25)-(26), with only P, Q in (12) replaced by

$$P' := P + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \left[\begin{array}{c} \lambda_k A \\ \lambda_k A \end{array} \right]$$

and with $A > 0$. This means that the conditions (17)-(18) can still be used to choose the control gains b, k, ϵ, α (or only the first item of (17) for undirected graph G, with any $\alpha, \lambda_b > 0$), although they can be further relaxed by explicitly taking into account the presence of $A > 0$ in P' and Q'. Moreover, since we still have (12) for (25)-(26) (with Q replaced by Q'), we can again utilize the same distributed backstepping law (19) of Sec. 2 to achieve the exponential convergence of z_1, \dot{z}_1, η_e and η_1, which will then, in turn, imply the exponential convergence of $(z_i, \dot{z}_1) \to (z_1^d, \dot{z}_1^d)$ as well with any $\lambda_b > 0$ and $\lambda_k > 0$.

Combining (19) and (24), we can also obtain a relation similar to (23) with ν_i modified to be

$$\nu_i = \nu_i + \nu_{ei} + \alpha (\nu_i + \nu_{ei}) + \gamma \sum_{j \in N_i} w_{ij} (\dot{e}_{ij} + \epsilon e_{ij})$$

and decode the backstepping centroid tracking control (with ν_i given by (27)) into the (real) control variables λ_i, w_i for each TPV. For this, similar to Sec. 2, we may use the following relation

$$\nu_{ei} = -\lambda_b (\lambda R_i e_3 - m_i \dot{e}_3 + m_i \dot{z}_1^d) + m_i \lambda_k (\dot{x}_i - \dot{z}_1^d) - \ddot{z}_1^d$$

to bypass the usage of \dot{x}_i. We now present Th. 2, which summarizes our results so far on the distributed and
simultaneous flocking and centroid trajectory tracking for the N TPVs on the balanced graph G.

Theorem 2. Consider the N TPVs (1)-(2) on a balanced and strongly-connected graph G, under the distributed control law (23) with \bar{v}_i given by (27). Also, assume that b, k, ϵ, α satisfy the conditions (17)-(18) (or only the first item of (17) with any $\epsilon, \alpha > 0$ for undirected G); and $\lambda_0 > 0$ and $\lambda_0 > 0$. Then, we have:

1. $(z_i, \dot{z}_i) \to 0$ exponentially;
2. $\nu_{ei} \to 0$ exponentially $\forall i = 1, 2, \ldots, N$; and
3. $(z_i - z_{i1}^0, \dot{z}_i - \dot{z}_{i1}^0) \to 0$ exponentially.

4. SUMMARY AND FUTURE RESEARCH

In this paper, we propose novel distributed control frameworks for TPVs on a strongly-connected and balanced graph G. To address the issue of under-actuation, we adopt the backstepping technique; while, to decentralize the controller over G, we extend/generalize the (passive) decomposition of [15]. Two control objectives are achieved: flocking and flocking plus centroid tracking, both exponentially converging. Some future research directions include: non-balanced and switching graphs; TPVs with attitude dynamics; and full robustness analysis against bounded δ_i and uncertain m_i.

REFERENCES

